Spectroscopic Laser Diodes and Accessories, $1.2 - 150 \ \mu m$:

Selected Recent Developments

www.lasercomponents.com

© LASER COMPONENTS, 2006

Content

- 1. Introduction
- 2. NIR Laserdiodes $(1.2 1.65 \mu m)$
- 3. MIR Laserdiodes $(3 25 \mu m)$
 - 1. Lead salt
 - 2. QCL
 - 3. MIR Accessories
- 4. THz
- 5. Wrap up @ 2nd QCL-Workshop

LASER COMPONENTS

www.lasercomponents.com

Johannes Kunsch

6th A.M.PROKHOROV ALL-RUSSIAN SEMINAR ON TUNABLE DIODE LASER SPECTROSCOPY (TDLS)

- 1. Universal Working Principle: Basics of Tunable Diode Laser Absorption Spectroscopy
- Lambert-Beer absorption law
- Universal applicable (works at all temperatures)
- Calibratable
- Multipass: Increased absorption length

 $I(\nu) = I_0(\nu) \exp(-k(\nu) l n)$

1. How does it work?

- Electrical Pulse: Switches laserdiode on. Laser warms up and changes emission wavelength. Scans over absorption.
- Look at Mid-Infrared (MIR) Fingerprint or Near Infrared (NIR) Overtone on the molecule.
- Example Ethane: Detection limit < 100 ppt (1 second)

www.lasercomponents.com

Johannes Kunsch

6th A.M.PROKHOROV ALL-RUSSIAN SEMINAR ON TUNABLE DIODE LASER SPECTROSCOPY (TDLS)

1. Commercial Importance

- Established method in NIR
- History: Breakthrough reported 2004 at 4th OPTAM conference
- MIR: so far systems for specific applications at low level
- Total number of system sales until 2003: 2,000 pcs. (estimated)
- Annual number of system sales 2006: aapr. 5,000 pcs. (estimated)

www.lasercomponents.com

Johannes Kunsch

6th A.M.PROKHOROV ALL-RUSSIAN SEMINAR ON TUNABLE DIODE LASER SPECTROSCOPY (TDLS)

2. NIR Laserdiodes $(1.2 - 1.85 \mu m)$

- Idea: Combine the output power of a DFB with onwafer test capability of a VCSEL
- Therefore: Price advantage
- Works well.
 Commercially available from
 1.2 to 1.65 µm.
 Samples @ 1.3 µm

FhI HHI Berlin, M. Möhrle et al. (2006)

Johannes Kunsch

6th A.M.PROKHOROV ALL-RUSSIAN SEMINAR ON TUNABLE DIODE LASER SPECTROSCOPY (TDLS)

MIR Laserdiodes (3-25 μm) Lead Salt (3-25 μm)

- LASER COMPONENTS shifted available range slightly towards shorter wavelength (down to 2.95 µm)
- Earlier: active zone made by binary PbSe
- Recently: active zone made by ternary PbSrSe

- Spectral emission of lead salt
 @ 3350 cm⁻¹ (2.985 µm)
- Hydroxyl radical @ 2.960 µm becomes available

Johannes Kunsch

www.lasercomponents.com

6th A.M.PROKHOROV ALL-RUSSIAN SEMINAR ON TUNABLE DIODE LASER SPECTROSCOPY (TDLS)

3.2 MIR-QCL (3.3-16 µm)

Improvement directions:

- □ Thermal and optical losses
- □ Faster depopulation of lower laser level

- Wavelength determined by design, not by bandgap
- Low inversion due to ps lifetime in upper laser level results in low gain
- Therefore CASCADE of several stages
- Faist et at. (1994)

Johannes Kunsch

6th A.M.PROKHOROV ALL-RUSSIAN SEMINAR ON TUNABLE DIODE LASER SPECTROSCOPY (TDLS)

Page 8

www.lasercomponents.com

3.2 MIR-QCL:

Motivations to use them in Trace Gas Monitoring

Theory

- Room temperature operation
- Instruments with higher resolution than lead salt laser based instruments due to narrow linewidth (kHz range compared to MHz at cwoperation)

Results

- Completely achieved at pulsed operation and widely at cw operation, but in commercial reality limited to bestsellers
- 7000 hours cw room temperature operation demonstrated for MARS mission
- Pulsed system performance similar to lead salt performance
- 5 times improvement at cw operation recently reported (Mc Manus et al, 2006).
 Detector limited?

Johannes Kunsch

www.lasercomponents.com

6th A.M.PROKHOROV ALL-RUSSIAN SEMINAR ON TUNABLE DIODE LASER SPECTROSCOPY (TDLS)

3.2 MIR-QCL: Thermal Design

- Basic Challenge: Phonon interaction with ps relaxation is used, i.e. heat is created
- Heat Conductivity: 15-20 times less in growth direction compared to lateral direction, appr. 500 layers

Practical ways

- Basic is hard to change
- Proven concepts applied:
 - Upside down mounting (heat sink close to active zone)
 - Overgrowth after processing, i.e. buried heterostructures (larger thermal contact area to heat sink)
 - Image: Lateral coupling (S. Golka et al)

www.lasercomponents.com

Johannes Kunsch

6th A.M.PROKHOROV ALL-RUSSIAN SEMINAR ON TUNABLE DIODE LASER SPECTROSCOPY (TDLS)

3.2 MIR-QCL: Materials

- Traditional:
 - □ GalnAs/AllnAs on InP
 - □ GaAs/AlGaAs on GaAs
- Recently:
 - AIAsSb barriers on InP (modification of traditional), especially at short wavelength (see CO-DFB)
- Theoretically:
 - □ GaN, Si/Ge

CO-DFB Laser, FhG IAF / LASER COMPONENTS

Johannes Kunsch

6th A.M.PROKHOROV ALL-RUSSIAN SEMINAR ON TUNABLE DIODE LASER SPECTROSCOPY (TDLS)

Page 11

www.lasercomponents.com

3.2 MIR-QCL: Depopulation Improvement

- Double phonon resonance:
 - 2 relaxation channels instead of 1 (4QW design, for CO-DFB shown before)
- Bound to continuum:
 - Transition to a miniband
 - Gain broadening (up to 300 cm-1 spontaneous emission FWHM @ 300 K)

Johannes Kunsch

6th A.M.PROKHOROV ALL-RUSSIAN SEMINAR ON TUNABLE DIODE LASER SPECTROSCOPY (TDLS)

www.lasercomponents.com

3.2 MIR-QCL: External Cavity

- Broad Gain Profile needed
 - Start with bound to continuum
 - □ Heterogenous cascade
 - Strong spectral overlap
- AR coating: 10⁻⁵ needed
- Result
 - □ Appr. 200 cm⁻¹ tuning
 - □ 10⁻³ reflectivity
 - □ Maulini et al (2006)

Johannes Kunsch

6th A.M.PROKHOROV ALL-RUSSIAN SEMINAR ON TUNABLE DIODE LASER SPECTROSCOPY (TDLS)

3.2 MIR-QCL: Quantum-Box Lasers

- Active region:
 2-D array of QB ministacks
 (2-3 QBs)
 - → Wallplug efficiency can be increased to 50%
- CBM = Current-Blocking Material
 - → etch-and-regrowth process
- No working device yet
- D. Botez et al (2006)

Johannes Kunsch

6th A.M.PROKHOROV ALL-RUSSIAN SEMINAR ON TUNABLE DIODE LASER SPECTROSCOPY (TDLS)

Page 14

www.lasercomponents.com

3.3 MIR Accessories: Infrared Single Mode Fibers

(From FTIR to QCL? - B. Mizaikoff et al (2006))

- Omnidirectional photonic bandgap refelctor enabled design of infrared SM fiber, 400 µm core
- Acts simultanously as wavelength selective waveguide and miniaturized gas cell
- Result: Detection of ethyl chloride (solved in liquid) at concentration levels of 30 ppb with response time of seconds probing a sample of 1.5 ml inside the fiber only
- Planar SM waveguides have also been demonstrated (also measurements in liquid phase)

www.lasercomponents.com

Johannes Kunsch

6th A.M.PROKHOROV ALL-RUSSIAN SEMINAR ON TUNABLE DIODE LASER SPECTROSCOPY (TDLS)

4. THz-QCL: Basic Challenges

- Lower gain, therefore number of cascades doubled
- Waveguide design
- Farfield optimization

Johannes Kunsch

6th A.M.PROKHOROV ALL-RUSSIAN SEMINAR ON TUNABLE DIODE LASER SPECTROSCOPY (TDLS)

LASER

www.lasercomponents.com

4. THz-QCL: Pros and Cons

- Direct and compact
- Reached threshold of usefulness for convenient imaging @ 10 K (33 mW) using FPA cameras (over 25 m distance demonstrated)
- Hope for parameter improvement
- Extremely low linewidth at cw (6 kHz measured)
- Can easily be moved over larger objects

- Limited tunability so far
- Limited availability so far (especially @ 77 K and high power)
- TDS: Spatial and spectral resolution, therefore QCLapplications must be developed

www.lasercomponents.com

Johannes Kunsch

6th A.M.PROKHOROV ALL-RUSSIAN SEMINAR ON TUNABLE DIODE LASER SPECTROSCOPY (TDLS)

4. THz-QCL: Demo experiment

5. Wrap up @ 2nd QCL Workshop

Milestones to be achieved in approximately two years by the 3rd International Workshop on Quantum Cascade Lasers in 2008	Votes received (Seville, 2004)*	Votes received (Bari, 2006) with total 39 present (out of total 54 workshop participants).	
CW 4-10 µm QCL operating at room temperature with >1	10	36	
W output power			
Commercial QCL market with >\$10M/year	18	13	
CW 25% wall-plug efficiency of 4-10 µm QCL at 300 K	8	2	
Exp. demonstration of 100-GHz modulation of QCLs	9	4	
Quantum-dot 2P→1S spontaneous emission in 1 year,	3	14	
stimulated emission in 2 years			
Wide tunability at THz frequencies (>10 %)	9	22	
Lowering cost of QCL (\$2k/dev for >10 devices)	1	9	
THz QCL operating above thermoelectric cooler	11	18	
temperature (> 240 K)			
QCL based on Si/Ge, GaN, or other materials	20	13	
QCL operating below 1 THz, in the frequency range of	2	9	
electronic devices			
Wide tunability at 4-10 µm	12	ACHIEVED	
RT THz generation by using nonlinear QCLs	-	9	
CW RT QCL/ICL < 3 micrometers	-	14	
RT QCL 1mJ single pulse PW: < 20 microseconds	-	1	
THz commercial product involving QCLs	-	15	

LASER COMPONENTS

Johannes Kunsch

6th A.M.PROKHOROV ALL-RUSSIAN SEMINAR ON TUNABLE DIODE LASER SPECTROSCOPY (TDLS)

www.lasercomponents.com

Much progress at sources, but relative stagnation at detectors and referring optical components...

Johannes Kunsch

www.lasercomponents.com

Authors

- J. Kunsch, L. Mechold LASER COMPONENTS GmbH, Werner-von-Siemens-Str. 15, D-82140 Olching j.kunsch@lasercomponentes.com
- A. Paraskevopoulos
 Fraunhofer Institut f
 ür Nachrichtentechnik, Heinrich-Hertz-Institut, Einsteinufer 37, D-10587 Berlin
- G. Strasser Quantum Optical Nanostructures Productions GmbH, Schönbachstr. 13, A-1040 Wien
- Ch. Mann, Q. Yang Fraunhofer Institut f
 ür Angewandte Festkörperphysik (IAF), Tullastr. 72, D79108 Freiburg

Johannes Kunsch

6th A.M.PROKHOROV ALL-RUSSIAN SEMINAR ON TUNABLE DIODE LASER SPECTROSCOPY (TDLS)

www.lasercomponents.com

THz-QCL: Technical Competition Part 1

THz	Room Temperature	Compact	Cheap	Tunable	Speed slow medium high	for User simple complex	S/N (typical f THz at good S/N)	Status Comm. Lab. Research
Lamp (FTS)	RT	sort of	THz-FTS components approx. 15T€	-	S (mechanics)	S (Golay D.)	0.1-10	С
Gas Lasers	RT	N	150 T€	hopping	S	С	(0.8-6.0)	С
Laser Diode Photomixer	RT	Y	May be	Y	Μ	$C \rightarrow S$	0.01-4.0 (0.1-1.0)	L → C
TDS	RT	N	200T€	-	H (full spectra with ASOPS)	C (C → S fiber: P low)	0.1-4.0 (0.1-2.0 S/N: 10 ³ -10 ⁴)	С
Pulse rectification (x*110 GHz)	RT	Y	ok (low f) pricy (high f)	Y (limited)	Μ	S (low f) C (high f)	0-2.5 (up to 1.0)	С
Smith-Purcell Emitters	RT	sort of	May be	Y	S (mechanics)	$C \rightarrow S$	> 0.1	$L \rightarrow C$
Bloch Oscillators	?	Y	May be	?	?	?	?	R
Germanium Lasers	quasi (cooler no liquids)	sort of (size limit cooler)	Y (but +cooler costs)	Y	M,H	S	(1-4, pulse: 1W)	$L \rightarrow C$
QC Lasers	quasi (cooler no liquids)	sort of (size limit cooler)	Y (but +cooler costs)	Y (limited)	M,H	S	1-5 (some f, pulse: 10s mW)	L → C

Johannes Kunsch

www.lasercomponents.com

6th A.M.PROKHOROV ALL-RUSSIAN SEMINAR ON TUNABLE DIODE LASER SPECTROSCOPY (TDLS)

THz-QCL: Technical Competition Part 2

	Problems Advantages
Lamp (FTS)	P: S/N bad A: easy to maintain and cheap
Gas Lasers	 P: gas handling (f coverage limited for gas phase samples) A: high power and multiple f with good coverage for liquid and solid samples
Laser Diode Photomixer	P: S/N roll off at high f (electronics) A: compact, easy handling, wide f coverage
TDS	 P: S/N roll off at high f (electronics), expensive pump source: 100 T€ A: wide f coverage at high speed with ASOPS, ps time resolution (chemical reactions)
Multipliers (x * 110 GHz)	 P: S/N roll off at high f (electronics), limited tuning, complex for high f > 1THz A: compact, very stable, high power cw at f < 1 THz
Smith-Purcell Emitters	P: electron gun still too complex A: tunable from sub-THz to THz
Bloch Oscillators	P: still at research level A: potentiell for high temperature operation
Germanium Lasers	 P: cooling required, He closed-cycle cooler and cryostat main investment: 80 T€ A: high power and wide tuning range
QC Lasers	P: cooling required, limited tuning (low yield for user frequency) A: compact, may be cheap (with cheaper 80K coolers)

CW operation: Typically needed only for applications in astronomy and atmospheric research (number of instruments may be 2 per satellite, rare cases of larger lots, mainly industry public relation and research level interest)

Pulsed operation: Higher power, therefore many applications conceivable **but** THz signatures of the application are needed and frequencies (if system not tunable) need to be tailored to each application!

Johannes Kunsch

www.lasercomponents.com

6th A.M.PROKHOROV ALL-RUSSIAN SEMINAR ON TUNABLE DIODE LASER SPECTROSCOPY (TDLS)